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LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A LIFTING-BODY

HYPERSONIC RESEARCH AIRCRAFT CONFIGURATION

By Jim A. Penland and Theodore R. Creel, Jr.

Langley Research Center

SUMMARY

An experimental investigation of the low-speed longitudinal, lateral, and directional

stability characteristics of a lifting-body hypersonic research airplane concept was con-

ducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the

Langley Research Center. The model was tested with two sets of horizontal and vertical

tip controls having different planform areas, a center vertical tail and two sets of canard

controls having trapezoidal and delta planforms, and retracted and deployed engine mod-

ules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa

(5 psf) (Mach number of 0.06) and a Reynolds number of 2 x 106 based on the fuselage

length. The tests were conducted through an angle-of-attack range of 00 to 300 and

through horizontal-tail deflections of 100 to -300.

The complete configuration exhibited excessive positive static longitudinal stability

about the design center-of-gravity location. However, the configuration was unstable

laterally at low angles of attack and unstable directionally throughout the angle-of-attack

range. Longitudinal control was insufficient to trim at usable angles of attack. Experi-

ments showed that a rearward shift of the center of gravity and the use of a center-located

vertical tail would result in a stable and controllable vehicle.

INTRODUCTION

Under a National Aeronautics and Space Administration contract (refs. 1 to 4),

McDonnell Aircraft Company identified the required research for future hypersonic cruise

aircraft, evaluated the research potential, and assessed the usefulness of several new

candidate research facilities. This Hypersonic Research Facilities (HYFAC) study con-

cluded that major advances must be made in the technological state of the art before air-

breathing hypersonic aircraft employing advanced propulsion and fuel systems could be

considered either feasible or practical. Recommendations were made that both ground

facilities and flight vehicles be utilized in order to improve the state of the art aerody-

namically, structurally, and propulsively.



One recommended flight research aircraft, a model of which is shown in figures 1

and 2, was a manned Mach 12, air-launched, rocket-boosted, all-body aerothermodyriamic

configuration that would operate in the true high-temperature environment. After boost,
this test aircraft would cruise at a constant Mach number for up to 5 minutes, and record

data throughout the flight mission. The aircraft would then decelerate to a dead-stick

landing as has been customary for previous research aircraft. Reference 5 reported

the aerodynamic characteristics of this all-body hypersonic research aircraft configura-

tion at Mach 6. References 6 and 7 documented the aerodynamic characteristics of sim-

ilar configurations at low speeds.

Because the proposed research aircraft will be flown to a powerless landing, the

low-speed aerodynamic characteristics must be known. The purpose of this report is to

document the aerodynamic characteristics of a lifting-body hypersonic research airplane

at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number

of 2 x 106 based on the fuselage length.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as standard coefficients of forces and

moments. The longitudinal data are referred to the stability-axis system; the lateral-

directional data are referred to the body-axis system. The axis systems are illustrated

in figure 3, and the design center of gravity, located at 63.6 percent body length, was
used as the moment reference. Values are given in both SI and U.S. Customary Units.

The measurements and calculations were made in U.S. Customary Units.

Ar reference area, planform area including small horizontal tails,
0.325 m2 (504.18 in 2)

b wing span, including small horizontal tails, 0.602 m (23.72 in.)

FDI
CD drag coefficient, DC ooAr

CD, o  drag coefficient at CL = 0

CL lift coefficient,
qoAr

CLa rate of change of lift coefficient with angle of attack per deg, c = 00

MX
C1  rolling-moment coefficient, MX

ooArb
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C10 rate of change of rolling-moment coefficient with angle of sideslip per deg

My
Cm pitching-moment coefficient, qMArl

Cm, rate of change of pitching-moment coefficient with angle of attack per deg,

a = 00

Cm,o pitching-moment coefficient at a = 00

8 Cm rate of change of pitching-moment coefficient with lift coefficient,
aC L longitudinal stability

M Z
Cn yawing-moment coefficient, MzArb

Cn rate of change of yawing-moment coefficient with angle of sideslip per deg

Cy side-force coefficient,
qAoor

Cyp rate of change of side-force coefficient with angle of sideslip per deg

c wing chord

cr,exp exposed root chord

FA axial force along X-axis; positive direction, -X

Fb = FN sin a + FA cos a

FL = FN cos a - FA sin a

FN normal force along Z-axis; positive direction, -Z

Fy side force along Y-axis; positive direction, +Y

L/D lift-drag ratio, CD

reference length (length of sharp nosed body), 1.528 m (60.15 in.)

M Mach number
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MX, My, MZ moments about X-, Y-, and Z-axes

gq free-stream dynamic pressure

X,Y,Z reference axes

x distance, theoretical nose to body station

z distance vertical from horizontal center line

a angle of attack, deg

P angle of sideslip, deg

6 angle of control deflection, positive deflection when trailing edge is down, deg

Subscripts:

C both canards deflected

H both elevons deflected

s stability-axis system

t trim condition, Cm = 0

Model nomenclature:

B body or fuselage

C 1  small trapezoidal canards

C 2  small delta-planform canards

C3  large trapezoidal canards

C 4  large delta-planform canards

Cp deployed canopy
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E o  open flow-through engine

ER retracted engine

H1  small horizontal tails

H2  large horizontal tails

V1  small twin vertical tails

V2  large twin vertical tails

V3  center vertical tail

MODELS

A photograph of the 0.062-scale model installed in the Langley 12-foot low-speed

tunnel is shown in figure 1. Detailed geometric characteristics of the models and the

various components are shown in figure 2 and tabulated in table I. Three types of detach-

able vertical tails were utilized: small and large twin vertical tails (fig. 2(c)); and a cen-

ter vertical tail, positioned on the top aft section of the fuselage (fig. 2(b)). Two types of

horizontal tails were utilized, small and large, and are shown in figure 2(c). The scram-

jet engine was represented in the retracted and open positions, the latter configuration

having a constant-area duct. The canopy was designed to retract into the fuselage nose

with the canopy top faired in with normal fuselage contours. In the present tests the

canopy was either in place or removed in order to simulate the deployed and retracted

conditions, respectively.

Small and large trapezoidal and delta-planform canards, having planform areas of

2 percent and 4 percent of the reference area, were tested and were mounted as shown in

figure 2(b). The small canard controls were tested at deflection angles of 00 to 150.1

It should be noted that the data presented herein for the body alone were measured

on the body shown in figure 2(a) (dashed lines in the aft cross-sectional views without

horizontal and vertical tails or fillets). The model was constructed of wood and fiber-

glass with the various removable components screwed in place and located by dowels.

APPARATUS AND TESTS

The tests were conducted in the Langley 12-foot low-speed tunnel at a Reynolds

number of 2 x 106 based on the body length and a dynamic pressure of 239.4 Pa (5 psf)
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(M = 0.06). A six-component strain-gage balance was installed inside the model fuselage
and attached to the tunnel sting-support system. The force and moment data were meas-
ured through an angle-of-attack range of 00 to 300 and at angles of sideslip of 00, 50,
and 100. All joints and hinge-line cracks were sealed with plastic tape prior to each test
run. Brief tests with and without fixed transition indicated no parameter variations other
than a fractional percent decrease in drag. Therefore, the tests were made without fixed
transition. No base-pressure corrections were made. Moments were calculated about
a center of gravity located on the vehicle center line at the x/l = 0.636 body station
measured from the theoretical sharp nose.

Because of the very low test Reynolds number of this investigation and the relatively
high turbulence factor of the tunnel flow, it is not recommended that the drag data be
extrapolated to flight Reynolds numbers. Lift-curve slopes, moments, and drag incre-
ments caused by component variations, however, are considered to be valid.

RESULTS AND DISCUSSION

Static Longitudinal Characteristics

Configuration buildup.- The static longitudinal characteristics of the basic body
alone and the variations effected by the addition of vertical and horizontal tails, engine
modules, and cockpit are presented in figure 4 through the test range of angles of attack
from 00 to 300. The body alone (B) and the models with the body and small twin verti-
cal tails (BV 1 ) exhibit nonlinear lift curves throughout the test range (fig. 4(a)) as com-
pared with the models having horizontal tails (H1 or H2 ), engine modules (E o or ER),
and deployed canopy (Cp). These models having horizontal tails, engine modules, and
deployed canopy not only have greater lift but also have linear lift curves up to the region
of probable flow separation on the horizontal tails at an angle of attack of about 200.
Conversely, the B and BV 1 models have more linear pitching-moment and stability curves
(figs. 4(d) and 4(e)) than do the models with the added components; the models with the
added components not only show a higher degree of stability up to ! = 200 but also have
a slight pitch-up tendency. The addition of Eo, ER, or Cp to the BH 1V 1 model shifted the
angle of attack for CL = 0 and for Cm = 0 but had no significant effect on the slopes
CLa, Cma, and aCm/aCL. The exchange of H2 V2 for H 1 V 1 resulted in a marked
improvement in the aforementioned stability derivatives approximately proportional to
the planform areas involved. This improvement with the use of H2V2 was about 1.5 times
the gain resulting from the use of H1 V 1 on model B, that is, the ratio of the areas of H2V 2to H1 V 1 . With the exception of the BH1V1ERCP test, the drag and lift-drag ratio results
of the configuration buildup were as expected: an improvement in L/D with the addition
of H1 and a decrease with the addition of Eo, ER, and/or Cp.
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Drag due to lift.- The drag due to lift for most of the configurations just discussed

is presented in figure 5. Again the B and BV 1 models exhibit the most linear of the

curves shown. It should be observed that although model B had the lowest CD,o (drag

at CL = 0), it also had the highest slope aCD/aCL 2 (drag-rise factor) and, therefore,

the greater drag due to lift. The addition of V1 slightly increased CD,o but decreased

the drag-rise factor; this was possibly caused by the end-plate effects of the outboard-

located vertical tails. The addition of H 1 appears to have had a negligible effect on CD,o

but greatly decreased the drag-rise factor and had.a nonlinearizing effect on the curve.

The CD,o was significantly increased by the addition of ER and Cp, but, at the higher

values of CL 2 , the curve is generally similar to that shown for the BH 1V 1 model. The

addition of the larger H2 and V2 again increased the CD,o and further decreased the

drag-rise factor as expected.

Center vertical tail.- Tests using a center vertical tail were conducted primarily

to compare the directional-stability characteristics with those of the twin outboard tails;

these characteristics are discussed in the section entitled "Static Lateral-Directional

Characteristics." However, such tests automatically produce longitudinal data. (See

fig. 6.) The addition of V3 to the basic BH1V1ERCp model resulted in a decrease in CL

and L/D, an increase in CD, a small positive increment of pitching moment, and no

change in Cma, or in the longitudinal stability aCm/aCL. Tests with a.C 1 canard in

conjunction with V3 were made to determine whether any interference could be caused

by the wake or vorticular flow impinging on'the center vertical tail. The use of the small

trapezoidal canards (C1) longitudinally resulted in a small increase in CL approximately

equal to the loss incurred by the use of V3 , a further increase in drag; no change in L/D,

and an additional positive increment in pitching moment with only a negligible change in

Cm, and aCm/aCL.

Large vertical and horizontal tails.- Figure 7 presents a partial configuration

buildup utilizing available data on the large vertical and horizontal tails. The most nota-

ble effect of the addition of V2ERCP to the body alone (B) was the reversal of the curva-

ture of the lift, pitch, and stability curves. (See figs. 7(a), 7(d), and 7(e).) The installa-

tion of H2 greatly increased the lift-curve slope CL, and increased negatively the slope

of the pitching-moment curve Cma in the angle-of-attack range up to about 200. There

was little change in the stability aCm/8CL at low lift coefficients corresponding to

a = 00 to 50, but the curve was made almost linear, a condition which extended the region

of positive longitudinal stability to a lift coefficient of about 0.56, corresponding to

a = 200.

Canards. - The results of the longitudinal tests on the four canard shapes, described

in the section "Models," are presented in figures 8, 9, and 10. Figure 8 presents the

results for the basic complete model BH1V1ERCp and for this model equipped with each



of the four canards at 6C = 00 and 6 H 1 = 00. Figures 9 and 10 present results of

tests of canards C 1 and C 2 , respectively, with 6C1 and 5C2 = 00, 50, 100, and 150, and

H1 = 00.

An inspection of these results shows that all canards tested, regardless of the

deflection angle, were relatively ineffective in producing lift, pitch, or an improved lift-

drag ratio. The Cm,o was increased less than 0.01 and the trim angle of attack was

increased less than 40 for the large trapezoidal canards, the most efficient subsonic

design tested. This apparent lack of overall measured effectiveness is, of course, partly

caused by the inherent low efficiency associated with the low Reynolds number of the tests.
This apparent lack is also caused by the center-of-gravity location of the configuration

which yields a longitudinal static margin of 15.6 percent body length. A rearward shift
of the center of gravity of 13 percent body length would make possible trim by undeflected
canards alone up to almost CL,t = 0.2 for the small trapezoidal canard and would pro-
vide neutral stability to CL,t = 0.25 for the small delta canard.

Longitudinal control characteristics.- The longitudinal characteristics of the com-
plete model BHlVlERCp are presented in figure 11 for elevon deflections of 100 to -300
through an angle-of-attack range of 00 to 30 0 . All parameters show an orderly variation
with control deflection at low angles of attack. An inspection of the lift curves shows
indications of separation occurring at a local flow deflection over the controls of about 200;
that is, a = 100 plus 6H1 = 100, a = 150 plus 6 H 1 = 50, and so forth. Figures 11(d)
and 11(e) show the model to be exceedingly stable and to have insufficient elevon control
power. With a 6H1 = -300 and the design center-of-gravity location at 0.6361, the model
could trim only to an angle of attack of 130 corresponding to a CL,t of 0.125. An esti-
mate of the trim capability with an aft-shifted center of gravity was made by rotating the
axes in figure 11(e); the rotations are shown as heavy dashed lines. By moving the cen-
ter of gravity aft about 7.4 percent body length to the 0.711 body station, the -300 elevon
deflection trims the model to a = 300 at a CL,t of 0.47 and still retains a degree of
longitudinal stability. Such a move of the center of gravity, while appearing to solve the
longitudinal trim problem, further aggravates a directional-stability deficiency.

The effects of increasing the horizontal-tail area by 100 percent and the vertical-
tail area by 50 percent on the longitudinal control capabilities are shown in figure 12 for
model BH 2 V 2ERCp. This increase in control area markedly increased the lift-curve
slope, the drag, and the longitudinal stability, and decreased the lift-drag ratio, as com-
pared with the small-tail model of figure 11. This increase in lift may be attributed to
both the increase in model planform area and the increase in planform aspect ratio. The
drag rise is primarily caused by the increased area of the 50 toed-in vertical tails, but is
also caused by the increased wetted area of the enlarged horizontal tails. The increased
tail-surface area resulted in an even more stable configuration than the small-tail model
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when the 0.6361 center-of-gravity location was used as a common reference. The trim

capability was identical with that of the model equipped with the small horizontal and

vertical tails; again the model could only trim to a = 130 and a CL,t of 0.125. In this

instance the required rearward shift of the center of gravity was about 9.4 percent body

length to a new center of gravity at 0.731, to trim with 6 H1 = -300 (fig. 12(e)). Because

of the excessively large center-of-gravity shifts required for a reasonable trim range of

the angle of attack, trim plots were considered to be unnecessary for the presentation of

results and, therefore, were omitted.

Static Lateral-Directional Characteristics

The coefficients of side force, rolling-moment, and yawing moment for the basic

BH1V1ERCp model are presented in figure 13 with angle of attack for various fixed

angles of sidelip. At P = 00, the magnitude of the parameters is small and thereby

indicates little or no asymmetry in the model construction or in the flow angularity in

the tunnel. The positive values of rolling moment at low angles of attack for both posi-

tive values of the sideslip angle provide a measure of undesirable negative dihedral

effect; at higher angles of attack the model exhibits the desired negative roll with posi-

tive sideslip angle or positive dihedral effect. Yawing moments are negative throughout

the angle-of-attack range for both sideslip angles. This condition results in a direc-

tionally unstable configuration, which, when coupled with the negative dihedral effect at

low angles of attack, probably causes dynamic instability through that region. It should

-be noted that there is apparent blanketing of the downstream vertical tail by the body cross

flow, as evidenced by the similarity of the yawing moments produced by the 50 and 100

sideslip angles.

Figure 14 shows the variation of the coefficients of side force, rolling moment, and

yawing moment with sideslip angle at a = 00 for the basic model BH1V1ERCp. The

importance of this figure is that it shows all parameters to be approximately linear with

sideslip angle. It was assumed that these lateral and directional parameters were linear

with sideslip angle at all angles of attack and that the slopes obtained from data on various

configurations, measured at 00 and 50 sideslip angles, were valid. The results of the tests

reduced in this manner are presented in figures 15 to 18 for various model configurations.

Configuration buildup.- The static lateral and directional stability characteristics

are presented in figure 15 for the body alone with a systematic buildup of components to

the complete basic configuration. Except at the lower angles of attack, all configurations

show positive dihedral effect -Clp up to a = 250. All configurations are unstable

directionally throughout the angle-of-attack range and this instability increases at angles

above 160. It should be noted that the addition of the vertical tails to the basic body

improved the directional stability as expected, but the addition of the horizontal tails

9



adversely affected the conditions. The addition of the retracted engine, which was located

near the center of gravity, had no effect on the directional stability, but the canopy further

increased the instability.

Enlarged vertical and horizontal tail.- Figure 16 presents a comparison of the

lateral-directional stability of the model with the small and large vertical tails. The

installation of the enlarged horizontal and vertical tails in place of the small surfaces

had a pronounced and desirable effect on the stability characteristics. The low angle-of-

attack, negative dihedral-effect region was reduced to neutral and the configuration was

now directionally stable up to a = 200. The model without the horizontal tails was direc-

tionally stable to a = 250, but with their addition the model became unstable at a = 200,

the instability probably caused by a blanketing of the vertical-tail surfaces.

Center vertical tail.- Figure 17 presents a comparison of the lateral-directional

stability of the basic configuration with and without the center vertical tail and with the

small trapezoidal canards. The addition of the center vertical tail to the basic model

greatly improved both the lateral and directional stability. The model exhibits positive

dihedral effect throughout the angle-of-attack range and positive directional stability up

to an angle of attack of about 230. The addition of the small trapezoidal canards had only

minor effects on the center vertical configuration.

Canards. - The effects on the lateral-directional stability of the addition of the small

trapezoidal and delta canards to the basic complete configuration are presented in fig-

ure 18. These data indicate that the lateral stability was improved through the middle

angle-of-attack range by the more negative values of C1,; the directional stability was

improved at high angles of attack by the more positive values of Cno with the addition

of the canards. This increase in directional stability accompanied by an increased nega-

tive side force was probably caused by local separation in the vicinity of the canards at

the higher angles of attack or, possibly, by the vortiginous wake of the canards impinging

on the aft section of the model.

Discussion of Summary Figures

As an aid to this discussion, figures 19 and 20 have been included to show graph-

ically the change in the location of the longitudinal aerodynamic center and the directional

aerodynamic center, respectively, in terms of model length for various configuration

modifications. Figure 19 shows that the body alone has a favorable aerodynamic-center

location and that the addition of vertical tails and horizontal tails moves the aerodynamic

center further rearward. The aerodynamic center is moved to such an extent that the

model is exceptionally stable, having a static margin of about 15.6 percent for the small

tail model and 19 percent for the large tail model. This high degree of stability resulted

in a longitudinally stiff configuration that was impossible to trim to any usable angle of
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attack with the design center-of-gravity location of 0.6361 as was discussed in the previ-

ous section.

Figure 20 shows that the directional-stability characteristics of the configurations

are diametrically dissimilar to the longitudinal-stability characteristics discussed previ-

ously. The body alone is unstable and the addition of either the small vertical tails, hori-

zontal tails, or retracted engine contributes positively by shifting the aerodynamic center

rearward but not sufficiently to move the aerodynamic center behind the design center

of gravity and produce a directionally stable configuration. The canopy has an adverse

effect. Only by the addition of the enlarged vertical and horizontal tails or by the addi-

tion of the center vertical tail was there success in making the model statically and direc-

tionally stable. The center vertical tail is by far the more efficient stabilizing surface

and has shifted the directional aerodynamic center rearward to 0.7951, which is very

close to the location of the longitudinal aerodynamic center that resulted from the addi-

tion of the small horizontal tails (fig. 19). Thus, if the center. of gravity were moved

rearward to the 0.711 body station, as suggested in the section of this paper entitled

"Longitudinal control characteristics," and a center tail were installed, the configu-

ration would possess both longitudinal and directional stability and would be longi-

tudinally controllable to a = 30 0 . The practicality of such a large shift in the center

of gravity would require a serious design study, but the addition of the rearward

located center vertical tail and the required rearward movement of the main landing

gear would certainly contribute to this design change.

CONCLUDING REMARKS

An experimental investigation of the low-speed longitudinal, lateral, and directional

stability characteristics of a lifting-body hypersonic research airplane concept was con-

ducted at a Reynolds number based on fuselage length of 2 x 106. The configuration was

found to be longitudinally stable without controls and, with the addition of horizontal con-

trols, to be excessively stable; this stability resulted in a longitudinally stiff vehicle that

was impossible to trim to any usable angle of attack with the design center of gravity

location. Conversely, the configuration was directionally unstable with and without the

design vertical controls and required an additional 50-percent vertical-tail area in the

form of enlarged tip fins or a center vertical tail for positive static directional stability.

Therefore, both a rearward shift in design center of gravity for longitudinal control and

an increase in vertical-tail size for directional stability are required for an aerodynam-

ically viable vehicle.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., November 27, 1974.
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TABLE I. - GEOMETRIC CHARACTERISTICS OF MODEL

Body:

Length, theoretical, m (in.) .......................................... 1.528 (60.15)

Length, actual, m (in.) . ........................................... .1.502 (59.15)

Maximumwidth, m (in.) ....................................... . 0.394 (15.5)

Maximum height, m (in.)............ ........................................ 0.2362 (9.3)

Base area, m
2 (in

2
) .................................................... . 0.025 (40.12)

Nose radius, m (in.) .............. ................. ............. . 0.0033 (0.13)

Aspect ratios:

Body alone ................ ...... ... .............................................. 0.5336

Body and small horizontal tails . .......... .......... ................................ .... 1.203

Body and large horizontal tails ....... .................................... .... 1.4396

Body with small horizontal tail:

Planform area, m
2 (in

2
) .............. .................................... . .0.325 (504.18)

Span, m (in.) .................................................. 0.602 (23.72)

Trapezoidal-planform canards, large:
Area, total, m

2 (in
2

) . ............................................. 0.0186 (28.86)

Area, exposed, m
2 (in

2
) . . . ............. ... . . . . . . . .. 0.013 (20.2)

Span, m (in.) . ............................................... 0.316 (12.43)

Aspect ratio .. . . . . . . . . ..... . ... . . . . . . . ..- . . .. . . . . . . . . . . . . . .. 6

Root chord, at fuselage center line, m (in.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 (2.79)

Root chord, exposed, m (in.) ......................................... 0.064 (2.52)

Tip chord, m (in.) . . ............ ................. . .... . ................ 0.0269 (1.059)

Mean aerodynamic chord, m (in.) ......... . . . . . ............................. . 0.052 (2.054)

Sweepback angles:

Leading edge, deg . .............. .. .............. . I ... .. ... ....... . 3.4

25-percent-chord line, deg ......... ... .. .. ............... ..... . ......... . 0

Trailing edge, deg ............... !.. .... . ............... . ............. . -9.5

Taper ratio ... . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . .. . . 0.5

Dihedral, deg ........................ ...... . .... . .......... . 0

Airfoil section ............ ....... . ......... . . ................... NACA 0012

Hinge-line location .. ................ .. *-*... * *.. ... .. ........ . 25 percent chord

Trapezoidal-planform canards, small:

Area, total, m
2 (in

2
) ............................................. 0.0093 (14.43)

Area, exposed, m
2 (in

2 ) . ........................................... 0.0065 (10.1)

Span, m (in.) .. ......................................... .... 0.2357 (9.28)

Aspect ratio ............ .. . . . ..... . ................................................. 6

Root chord, at fuselage center line, m (in.) ............. . . . . . . . . . . . . . . . . . . . .... 0.0526 (2.07)

Root chord, exposed, m (in.) . .. . . . . . .. .. ..................................... 0.0459 (1.81)

Tip chord, m (in.)......... ... .. . ........................................... .. 0.0264 (1.04)

Mean aerodynamic chord, m (in.) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0409 (1.61)

Sweepback angles:
Leading edge, deg ........... . . . . ...................................... 3.4

25-percent-chord line, deg ........................ ...... ................. 0

Trailing edge, deg .............. .................................................. -9.5

Taper ratio.................. ........................................... 0.5

Dihedral, deg ..................... .- . . . . . . . . . . ......... .. .... .. 0

Airfoil section .......... ................. . ...................... ..... NACA 0012

Hinge-line location ................ . .......................................... 25 percent chord
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL - Continued

Delta-planform canards, large:

Area, total, m
2  

(in
2

) .................................... .. . .. ... 0.029 (44.8)

Area, exposed, m
2  

(in
2

) ........................ ....... ........... 0.013 (20.2)

Span, total,m (in.) ................ .............................. 0.203 (8.00)

Aspect ratio, total .......... ....................... .................. 1.43

Root chord, at fuselage center line, m (in.) ................... .......... . . 0.232 (9.12)

Root chord, exposed, m (in.) ............... .... .................. ... 0.197 (7.75)

Mean aerodynamic chord, total, m (in.) .............. ... ............... . . 0.153 (6.04)

Sweepback angles:

Leading edge, deg ....................... ...... ....... .............. 65

Trailing edge, deg .............. .................................... -6.5

Dihedral, deg ..... ..... .. .. .... ....... ....... . . . .............. .. ... 0

Airfoil section ...................................... ............ Circular are

Airfoil thickness ratio ................... ........ ........ ............. 0.05

Leading-edge radius, m (in.) .................. ............ .......... 0.0008 (0.032)

Delta-planform canards, small:

Area, total, m
2  (in

2
) ......................... . ............. .... 0.0145 (22.4)

Area, exposed, m
2  (in

2
) ......... .................... ............ . 0.0065 (10.1)

Span, total, m (in.) .................... ... .. ... ............... 0.1600 (6.3)

Aspect ratio, total .......... .......................... ............. 1.76

Root chord, at fuselage center line, m (in.) . .................. ..... ......... . 0.1803 (7.1)

Root chord, exposed, m (in.) ...................................... ... 0.1389 (5.47)

Mean aerodynamic chord, m (in.) .......... ...... ..................... 0.1201 (4.73)

Sweepback angles:

Leading edge, deg ............................. ...... ... ................ 65

Trailing edge, deg ................... ...................................... -6.5

Dihedral, deg ............ .. .... ....... . .... . . . .. ... ... ........ 0

Airfoil section ........... ....... ... .............. ............. Circular arc

Airfoil thickness ratio .................. .............. ..... ........... 0.05

Leading-edge radius, m (in.) ........................ .............. ... 0.0008 (0.032)

Vertical tails, twin, small:

Area, total, m
2  

(in
2

) ........... . .... .. .. . ... . ............ . 0.0691 (107.08)

Span, m (in.) . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 0.1224 (4.82)

Aspect ratio . ............ . .. . .. ................ ... ................. . . 0.434

Root chord, at fuselage center line, m (in.) ................... ............. 0.436 (17.16)

Mean aerodynamic chord of exposed area, m (in.). . .................. ... . . . ... .. 0.298 (11.72)

Sweepback angles:

Top leading edge, deg ...................................... . ........ . 78

Bottom leading edge, deg ............ ...... . ....... . .. .... .. ......... 14

Trailing edge, deg ............................. ......... ............. 11

Airfoil section ................. . ............................... Circular arc

Leading-edgeradius, m (in.) .......................... . ............. 0.00119 (0.047)

Trailing-edge height, m (in.) ........... . ........ ............... ... 0.0016 (0.063)

Thickness ratio ........................... . .. ... . ..... ............ 0.04
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL - Concluded

Vertical tails, twin, large:

Area, total, m
2 

(in
2 ) ...... ............. ......................... 0.1036 (160.62)

Span, m (in.) .......... . ............ .... ........ 0.181 (7.13)

Aspect ratio ........................... ... . . ......... ........ .. 0.633

Root chord, at fuselage center line, m (in.) ............... ......... . . . .. . 0.436 (17.16)

Mean aerodynamic chord of exposed area, m (in.) . . . . . . . . . . ............. ..... . . . . . . . . . 0.301 (11.85)

Sweepback angles:

Top leading edge, deg ........................ . ... .......... ........... 66

Bottom leading edge, deg .................................... .......... . 14

Trailing edge, deg ................... ..... . . ....... ....... ......... 11

Airfoil section ................... . . .. ................ .......... ... Circular arc

Leading-edge radius, m (in.) .................. ...... . . . . . . . . . . . . .... 0.00119 (0.047)

Trailing-edge height, m (in.) .. ......... .. .. ..... .............. 0.0016 (0.063)

Thickness ratio ......... .......... . . ... . ........... 0.04

Center vertical tail:

Area, total, m
2 

(in
2) ................ .... ........ ........... 0.0345 (53.54)

Span, exposed, m (in.) ............ . ....... . ... ..... ........ 0.168 (6.63)

Aspect ratio, exposed ... . . . . ...................... . . . . . . . . . . . . . . . . . . . . . . 0.821

Taper ratio, exposed. .. ..... . . . . ..... .. .. .. . . .... . . . . . . . . . . . . . . . 0.308

Root chord, at fuselage surface line, m (in.) . . . .......................... . . . . .. . . .. . 0.251 (9.9)

Tip chord, m (in.) .. ...... .... .......... . .. ...... .. .......... .......... 0.0775 (3.05)

Mean aerodynamic chord of exposed area, m (in.) . .................. ... . . . ... 0.178 (7.008)

Sweepback angles:

Leading edge, deg ................... . . ...................... ...... .... 60

Trailing edge, deg ...... ............ ..... ..... . ................... 30

Airfoil section ......... ............ .. ...... . ........ ........... NACA 0004

Leading-edge radius, m (in.) ................... ..... .. . . . . . . . . . . . 0.00119 (0.047)

Trailing-edge radius, m (in.) .................................... .... . ..... .... 0 (0)

Horizontal tails, small:

Area, exposed, each, m
2 

(in
2

) ...................... ........ ............. 0.0145 (22.51)

Span, total, exposed, m (in.) ............ ........... .. .. .. ......... 0.1054 (4.15)

Aspect ratio, exposed .................. ... ..... ..... .. ... ... ........ 0.76

Root chord, exposed, m (in.) . .................. . . . . . . . . . . . . 0.276 (10.85)

Mean aerodynamic chord, total, m (in.) ................... ....... . .. ..... . . 0.1836 (7.23)

Sweepback angles:

Leading edge, deg .. . ....................... . .. ... .. .. ..... .. 65

Trailing edge, deg ................... . . .... . . .. ........... ........... -6.5

Dihedral, deg ........... .......... .................... ... .. .......................... 0

Airfoil section ............................... . . .. . ......... . . ... ............ Circular arc

Airfoil thickness ratio ................... ........... . ............ ......... 0.03

Leading-edge radius, m (in.) . . . . . . . ....... ........ .... . . ...... . . 0.00119 (0.047)

Horizontal tails, large:

Area, exposed, each, m
2 

(in
2

) ................. .. ..................... 0.029 (45.00)

Span, total, exposed, m (in.) .................... .................... 0.403 (15.87)

Aspect ratio, exposed ...................... .... ........... ....... 0.76

Root chord, exposed, m (in.) ................... ................. ... 0.263 (10.34)

Mean aerodynamic chord, total, m (in.) ................... ............... 0.263 (10.34)

Sweepback angles:

Leading edge, deg ................... .............. .......... 65

Trailing edge, deg ......................... .......... . . ............ -6.5

Dihedral, deg ................ . ........ .... ........ ...... . .. . ....... 0

Airfoil section ............... ... ................ ...... . ........... Circular are

Airfoil thickness ratio ......................... ..... .. ... ........ ....... 0.03

Leading-edgeradius, m (in.) ........................................ 0.00119 (0.047)
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L-72-3741
Figure 1.- Photograph of model installed in tunnel.
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0 .124 .233 .374 .499 .599 .710 .797 .909 1.00

-636

Scramjet retracted

Scramjet open

(a) Complete model.

Figure 2.- Details of wind-tunnel model. All dimensions are normalized by the fuselage length L.
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(b) Center vertical tail and small and large trapezoidal and delta canards.

H.L. denotes hinge line.

Figure 2.- Continued.
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(c) Small and large horizontal and vertical tails.

Figure 2.- Concluded.
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Figure 3.- Systems of reference axes; arrows indicate positive directions.
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Figure 4.- Longitudinal characteristics of the body alone and the body with

various horizontal and vertical tails. 6H = 00.
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Figure 4.- Continued.
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Figure 4.- Continued.
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Figure 4.- Continued.
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(e) Stability.

Figure 4. - Concluded.
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Figure 5. - The drag due to lift of the body alone and the body with vertical and horizontal tails,
retracted engine, and canopy. 5H = 00.
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(a) Lift.

Figure 6.- Effect on longitudinal characteristics of addition of the center vertical tail

and small trapezoidal canards to the BH1V1ERC p configuration. 5H = 00
.

27
27



,4

O BHIV E RCp

O BH1V1ERCpV3

0 BH1V1ERCpV3C 1

3P]

CD

/

0 8 12 16 20 24 28 32

a, deg

(b) Drag.

Figure 6.- Continued.
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Figure 6.- Continued.
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Figure 6.- Continued.
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(e) Stability.

Figure 6.- Concluded.
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Figure 7.- Effect on longitudinal characteristics of addition of the large horizontal

tail H2 to the BV2ERCP configuration. 6 H = 00.
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Figure 7.- Continued.
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Figure 7.- Continued.
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Figure 7.- Continued.
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Figure 7.- Concluded.
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Figure 8.- Longitudinal characteristics of model BHV1lERCp (body, small tails,
retracted engine, and canopy) with various canards. 6C = 6H = 00.
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Figure 8.- Continued.
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Figure 8.- Continued.
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(e) Stability.

Figure 8.- Concluded.
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(a) Lift.

Figure 9.- Longitudinal characteristics of model BH1VlERCpC 1 (body, small tails,
retracted engine, canopy, and small trapezoidal canards). 6H1 = 00 .
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Figure 9.- Continued.

43



3. 2

2.4

1.6 Cl
L 1C , degL / D

O +10
a +15

-1. 20 4 8 12 16 20 24 28 32

a, deg

(c) Lift-drag ratio.

Figure 9.- Continued.
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(e) Stability.

Figure 9.- Concluded.
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Figure 10.- Longitudinal characteristics of model BH1V1ERCpC 2 (body, small tails,
retracted engine, canopy, and small delta canards).
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Figure 10.- Continued.
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Figure 10.- Continued.
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(e) Stability.

Figure 10.- Concluded.
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Figure 11.- Longitudinal characteristics of model BH1V1ERCp (body, small tails,
retracted engine, and canopy).
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Figure 11.- Continued.
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Figure 11.- Concluded.
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Figure 12.- Longitudinal characteristics of model BH2V 2 ERCp (body, large tails,
retracted engine, and canopy).
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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Figure 13.- Variation of side force and rolling and yawing moments with angle of

attack at various angles of sideslip for B1H1V1ERCp.
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Figure 14. - Variation of side force and rolling and yawing moments with

sideslip angle for BH1V1ERCp. a = 00.
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Figure 15. - Lateral and directional stability of the body alone and the body with

small vertical and horizontal tails, retracted engine, and canopy.
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Figure 16.- A comparison of the lateral and directional stability of the model with

small and large vertical tails. 6H = 00

65



O BH1V1ERCP

El BH1V1ERCPV
3

O BHIVIERCpV
3C1

.04

-.04

.004

C 0 --

-. 004

.01

n.0 - - -- ----- ------ - --.-

-.01
0 4 8 12 16 20 24 28

a, deg

Figure 17.- Effect on lateral and directional stability of addition of a center vertical
tail and canards to the basic complete configuration. 6

H = 00.
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Figure 18.- Effect on lateral and directional stability of the basic configuration

with the addition of small trapezoidal and delta canards. 5H = 6C = 00.
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Longitudinal aerodynamic center x cg m _
= a = 0

S CL

Center of gravity, 0.6361

Body alone

B Longitudinal aerodynamic center 0.712
0.712

Body with vertical tails

B V1

0.726

Body with vertical & horizontal tails

B V1H1  0.796
& with retracted engine

B V1HIER

Enlarged vertical & horizontal tails

B V2 H2 ER 0.830

Figure 19.- Summary of longitudinal aerodynamic-center location

for configuration buildup.
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Directional aerodynamic center xcg aCn b
( ), x = 0I i aCy t

Center of gravity, 0.636

Body alone
Directional aerodynamic center

1

Body with vertical tails ~

B V1  0628

Body with vertical & horizontal tails

B VH1 0.628

With retracted engine

B V1 H 0.6ER2

With canopy

B V2H2 ERCP  0.572

Enlarged vertical & horizontal tails

B V2H2ERCP  .65

Center vertical tail

B V1H 1 ERCpV 3  0.795

Figure 20.- Summary of directional aerodynamic-center location
for configuration buildup.
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Station
x/t

.12 4 0. 0 0
.233 .909
.374 .797

99_- - .395

.499 83. 50

.710 A 800

Station x/. 
650

0 .124 .233 .374 .499 .599 .710 .797 .909 1.00
.636

Scramjet retracted

Scramjet open

(a) Complete model.

Figure 2.- Details of wind-tunnel model. All dimensions are normalized by the fuselage length ..




